Structures of Two Flavonoids from Physalis minima, 5-Methoxy-6,7-methylenedioxyflavone (I) and 5,6,7-Trimethoxyflavone (II)

By L. L. Koh and A. S. Ng
Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 0511

(Received 24 February 1992; accepted 18 May 1992)

Abstract

I) 9-Methoxy-6-phenyl-8 H -[1,3]dioxolo-[4,5-g][1]benzopyran-8-one, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{5}, \quad M_{r}=296.3$, monoclinic, $P 2_{1}, a=5.269$ (2), $b=19.781$ (6), $c=$ 6.768 (2) $\AA, \beta=106.46$ (2) ${ }^{\circ}, V=676.5$ (3) $\AA^{3}, Z=2$, $D_{x}=1.454 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $1.08 \mathrm{~cm}^{-1}, F(000)=308, T=298 \mathrm{~K}, R=0.028$ for 1138 observed reflections $[I>2 \sigma(I)]$. (II) $5,6,7-$ Trimethoxy-2-phenyl-4 H -1-benzopyran-4-one, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5}, \quad M_{r}=312.3$, monoclinic, $\quad P 2_{1} / c, \quad a=$ 13.074 (4),$\quad b=14.196$ (5),$\quad c=8.365$ (2) $\AA, \quad \beta=$ $102.87(2)^{\circ}, \quad V=1513.6(8) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.371 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $1.00 \mathrm{~cm}^{-1}, F(000)=656, T=298 \mathrm{~K}, R=0.040$ for 1470 observed reflections $[I>2 \sigma(I)$]. X-ray diffraction confirmed the structures of (I) and (II) as reported based on spectroscopic and synthetic studies [Ng \& Goh (1990). J. Nat. Prod. 53, 747-749]. The molecules of both compounds are nearly planar. In (I), the phenyl ring is twisted at 6.7° from the plane of the fused rings and the methoxy group at $\mathrm{C}(5)$ is also slightly out of the plane. In (II), the phenyl is twisted at 11° from the plane of the fused rings and the three methoxy groups are slightly out of this plane. Bond lengths and angles in (I) and (II) are similar and within expected ranges.

Experimental. (I) and (II) were isolated from Physalis minima ($\mathrm{Ng}, 1988$). D_{m} was not measured. Crystal sizes: (I) $0.40 \times 0.35 \times 0.25 \mathrm{~mm}$; (II) $0.40 \times 0.35 \times$ 0.25 mm . Lattice parameters were refined using 20 reflections for both (I) and (II), in the ranges $8<2 \theta$ $<25^{\circ}$ for (I) and $7.5<2 \theta<25^{\circ}$ for (II). A Siemens $R 3 \mathrm{~m} / V 2000$ diffractometer with graphite monochromator and ω scans was used for data collection. For (I), 1366 reflections in the range $3.5<2 \theta<50^{\circ}$ were measured for $h=0$ to $6, k=0$ to $22, l=-8$ to 7. 1233 of these reflections were independent ($R_{\mathrm{int}}=$ $0.021)$, and 1138 observed $[I>2 \sigma(I)$]. Three standard reflections checked every 97 reflections showed no significant intensity variation for (I); no absorption correction was made. For (II), 2847 reflections in the range $3.5<2 \theta<50^{\circ}$ were measured for $h=$ -15 to $15, k=-16$ to $0, l=0$ to 9.2674 of these reflections were independent ($R_{\mathrm{int}}=0.041$), and 1470
observed $[I>2 \sigma(I)]$. Three standard reflections checked every 97 reflections showed no significant intensity variation for (II); no absorption correction was made.

(I)

(II)

Both structures were solved by direct methods and refined by full-matrix least squares, minimizing $\sum w\left(F_{o}-F_{c}\right)^{2}$. Non-H atoms were refined with anisotropic thermal parameters. H atoms were placed at calculated positions with fixed isotropic thermal parameters. For (I), the y coordinate of $\mathrm{O}(1)$ was fixed during refinement and the origin was located on $P 2_{1}$. For (I), $R=0.028, w R=0.036$ for observed reflections and 199 parameters; maximum $\Delta / \sigma=$ 0.096; goodness of fit $=1.58 ; \Delta \rho_{\max }=0.14, \Delta \rho_{\min }=$ $-0.11 \mathrm{e}^{-3} ; w=1 /\left(\sigma^{2}+0.0002 F^{2}\right)$. For (II), $R=$ $0.040, w R=0.056$ for observed reflections and 208

Fig. 1. Perspective view of (I) with atomic numbering.

Fig. 2. Perspective view of (II) with atomic numbering.

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement coefficients $\left(\AA^{2} \times 10^{3}\right)$

Equivalent isotropic U is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.				
	x	y	z	U
Compound (I)				
$\mathrm{O}(1)$	2443 (3)	6910	6369 (3)	44 (1)
$\mathrm{O}(4)$	2864 (3)	5211 (1)	9839 (3)	48 (1)
O(5)	5690 (4)	4629 (1)	7580 (3)	51 (1)
O(6)	8345 (4)	4919 (1)	4257 (3)	54 (1)
O(7)	7953 (4)	5957 (1)	2619 (3)	51 (1)
C(2)	1210 (5)	6873 (2)	7883 (4)	39 (1)
C(3)	1376 (5)	6313 (2)	9023 (4)	43 (1)
C(4)	2805 (4)	5715 (1)	8750 (3)	36 (1)
C(5)	5605 (5)	5223 (1)	6573 (3)	36 (1)
C(6)	5683 (5)	5346 (1)	5034 (4)	38 (1)
C(7)	6552 (4)	5965 (1)	4026 (3)	39 (1)
C(8)	5108 (5)	6490 (1)	4446 (3)	42 (1)
C(9)	3904 (5)	6372 (1)	6002 (3)	36 (1)
C(10)	4118 (5)	5764 (2)	7099 (3)	35 (1)
C(11)	7742 (5)	4154 (2)	7614 (4)	52 (1)
C(12)	8892 (5)	5270 (2)	2585 (4)	51 (1)
C(20)	-293 (5)	7488 (2)	8024 (4)	44 (1)
C(21)	- 543 (6)	8010 (2)	6623 (5)	58 (1)
C(22)	-2036 (7)	8579 (2)	6743 (6)	72 (1)
C(23)	-3285 (7)	8631 (2)	8274 (7)	74 (1)
C(24)	-3058 (7)	8120 (2)	9664 (6)	75 (1)
C(25)	-1589 (6)	7548 (2)	9558 (5)	61 (1)
Compound (II)				
C(2)	9454 (2)	2286 (2)	-105 (3)	41 (1)
C(3)	9347 (2)	1349 (2)	-109 (3)	45 (1)
C(4)	8503 (2)	876 (2)	424 (3)	45 (1)
C(5)	6827 (2)	1212 (2)	1448 (3)	41 (1)
C(6)	6147 (2)	1859 (2)	1864 (3)	45 (1)
C(7)	6358 (2)	2826 (2)	1815 (3)	43 (1)
C(8)	7237 (2)	3137 (2)	1335 (3)	43 (1)
C(9)	7909 (2)	2476 (2)	899 (3)	39 (1)
C(10)	7750 (2)	1505 (2)	952 (3)	40 (1)
C(11)	7096 (3)	-232 (2)	2867 (4)	68 (1)
$\mathrm{C}(12)$	4322 (2)	1675 (3)	1124 (5)	88 (2)
C(13)	5795 (2)	4389 (2)	2234 (4)	64 (1)
C(20)	10275 (2)	2828 (2)	-658 (3)	41 (1)
C(21)	10190 (2)	3790 (2)	-889 (3)	49 (1)
C(22)	10939 (2)	4286 (2)	- 1483 (4)	56 (1)
C(23)	11782 (2)	3822 (2)	- 1846 (4)	60 (1)
C(24)	11885 (2)	2871 (2)	-1584 (4)	63 (1)
C(25)	11144 (2)	2359 (2)	- 1005 (3)	54 (1)
O(1)	8752 (1)	2862 (1)	404 (2)	45 (1)
O(4)	8433 (2)	10 (1)	406 (3)	70 (1)
O(5)	6562 (1)	276 (1)	1456 (2)	52 (1)
O(6)	5267 (2)	1554 (1)	2357 (3)	61 (1)
O(7)	5639 (1)	3398 (1)	2279 (2)	57 (1)

parameters; maximum $\Delta / \sigma=0.040$; goodness of fit $=0.65 ; \Delta \rho_{\max }=0.15, \quad \Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3}, \quad w=$ $1 /\left(\sigma^{2}+0.0053 F^{2}\right)$. All calculations were performed with SHELXTL-Plus (Sheldrick, 1990) on a MicroVAX 2000 computer. Atomic scattering factors were obtained from International Tables for X-ray Crystallography (1974, Vol. IV). Figs. 1 and 2 were prepared by SHELXTL-Plus graphics programs. The structure of (I) is shown in Fig. 1, which also shows the atomic numbering. The structure with atomic numbering of (II) is shown in Fig. 2. Atomic coordinates of non-H atoms are given in Table 1.* Bond lengths, angles and selected torsion angles are given in Table 2.

[^0]Table 2. Bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles (${ }^{\circ}$)

Related literature. For isolation and spectroscopic study of (I) and (II) see Ng (1988) and Ng \& Goh (1990). Compound (II) has also been isolated from other plant species (Kutney \& Hansson, 1971; Hosozawa, Kato \& Munakata, 1972; Pinar, 1973; Panichpol \& Waterman, 1978).

We wish to thank the National University of Singapore for financial support.

References
Hosozawa, S., Kato, N. \& Munakata, K. (1972). Phytochemistry, 11, 2362-2363.

Kutney, J. P. \& Hansson, H. W. (1971). Phytochemistry, 10, 3298-3302.
NG, A. S. (1988). Phytochemistry, 27, 3708-3709.
NG, A. S. \& Goh, W. P. (1990). J. Nat. Prod. 53, 747-749.
Panichpol, K. \& Waterman, P. G. (1978). Phytochemistry, 17, 1363-1364.
Pinar, M. (1973). Phytochemistry, 12, 3014-3015.
Sheldrick, G. M. (1990). SHELXTL-Plus. Release 4.0. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.

Acta Cryst. (1993). C49, 107-109

Structure of 2-[N-(2-Hydroxyethyl)]aminomethyl-3-phenylthioindole

By S. Eswaramoorthy, K. S. Raju and M. N. Ponnuswamy
Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras - 600 025, India

(Received 23 July 1991; accepted 25 March 1992)

Abstract

C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}, \quad M_{r}=298.4\), orthorhombic, Pbca, $a=36.276$ (7), $b=10.469$ (3), $c=8.229$ (3) \AA, $V=3125.2(5) \AA^{3}, \quad Z=8, \quad D_{x}=1.27 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{CuK} \mathrm{\alpha})=1.5418 \AA, \quad \mu=1.73 \mathrm{~mm}^{-1}, \quad F(000)=$ 1264, $T=293 \mathrm{~K}, R=0.060, w R=0.063$ for 1709 reflections. The indole moiety is planar with the S atom -0.051 (1) \AA out of the plane. The phenyl ring is oriented at an angle of $82.3(1)^{\circ}$ to the indole moiety. The structure is stabilized by an intra- and two intermolecular hydrogen bonds $[\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ 2.858 (5) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N} 2.766$ (6) \AA].

Experimental. Colourless rectangular needle-shaped crystals were grown by slow evaporation in ethanol. The preliminary details of the crystal were obtained by oscillation and Weissenberg photographs. A crystal with dimensions $0.1 \times 0.25 \times 0.3 \mathrm{~mm}$ was used for data collection on an Enraf-Nonius CAD-4 diffractometer. Cell dimensions were determined from setting angles of 25 reflections having $15 \leq \theta \leq 22^{\circ}$. Intensity data were collected by $\omega / 2 \theta$-scan technique using $\mathrm{Cu} K \alpha$ radiation between 2 and 130° in 2θ; range in $h k l: 0 \leq h \leq 42 ; 0 \leq k \leq 12 ; 0 \leq l \leq 9$. Two standard reflections were monitored after every 200 reflections and showed 2.2% intensity variation for which correction was applied. A total of 2389 reflections were measured of which 1709 reflections with I $\geq 3 \sigma(I)$ were used for refinement. The intensities were corrected for background, Lorentz and polarization effects and absorption (maximum/minimum transmission factors $0.987 / 0.923$). The structure was solved by Patterson and difference Fourier synthesis using SHELXS86 (Sheldrick, 1986), all the H atoms were located from difference Fourier syntheses. Full-
matrix least-squares refinement for 262 parameters was with anisotropic thermal parameters for the non- H atoms and isotropic for the H atoms using the SHELX76 (Sheldrick, 1976) program. Final $R=$ 0.060 and $w R=0.063, w=2.22 /\left[\sigma^{2}(F)+g F^{2}\right]$, where $g=0.0013$; the refinement terminated when shift/ e.s.d. for non-H atoms was less than 0.002; goodness of fit $S=1.5$. The maximum and minimum electron densities in the final ΔF map were 0.59 and $-0.26 \mathrm{e} \AA^{-3}$. Scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The structural geometry and graphics were obtained using PARST (Nardelli, 1983) and PLUTO (Motherwell \& Clegg, 1978). All calculations were performed on a MicroVAX II computer. The final positional parameters of the non-H atoms with $B_{\text {eq }}$ values are given in Table 1.* A perspective view of the molecule with numbering scheme and unit-cell packing are shown in Figs. 1 and 2 respectively. Bond lengths, bond angles, selected torsion angles and the hydrogen-bonding scheme are given in Table 2.

Related literature. The title compound is the key intermediate for the synthesis of tetrahydro-pyrazino[1,2-a]indole. The importance of these

[^1]© 1993 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55455 (20 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HL1008]

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, bond lengths and angles involving H atoms, torsion angles and least-squares-planes data have been deposited
 with the British Library Document Supply Centre as Supplementorsion angles and least-squares-planes data have been deposited
 with the British Library Document Supply Centre as Supplementary Publication No. SUP 55325 (21 pp .). Copies may be obtained
 through The Technical Editor, International Union of Crystaltary Publication No. SUP 55325 (21 pp .) Copies may be obtained
 through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CD0069]

